
Reiman Gardens
Butterfly Wing Web Application

Final Report

Team Dec1608
Michael Bonpua

Scott Mueller
Carson Noble

Megan Reiman
Nicholas Riesen

Adviser

Dr. Diane Rover

Client: Reiman Gardens
Nathan Brockman

Anita Westphal

6 December 2016

Table of Contents

Table of Contents 1

Introduction 3

Requirements 4
Functional Requirements 4

Visitor Requirements 4
Administrative Requirements 4

Non-Functional Requirements 4
Coding and Workflow Standards 5

Naming Conventions 5
Code Formatting 5
Documentation 6

Branching Policy 6

Implementation Details 6
Tools 6

Server Side 6
Client Side 7

Class Hierarchy and Design 8
Controllers 8
Models 9

Platform / Hosting 10
Operating environments 10
Testing processes and testing results 10

Code Review 10
User Acceptance Testing 11

Appendix I: Operation Manual 12
Home page 12
Stats Page 13
Butterfly Search 13
Gallery 14
Plants 15
Learn More 15

Appendix II: Alternative Versions 17

Appendix III: Code 19

 1

Routes 19
Controllers 20
Blade Templates 20
Models 21

 2

Introduction
Reiman Gardens hosts a butterfly wing in which they house several hundred butterflies at a time
for visitors to see. In an effort to effectively convey information about the various butterfly
species, Reiman Gardens developed a web application to complement the experience.

The original application provided the ability for visitors to the wing to see images of the
butterflies, facts about specific butterflies, and to search for butterflies based on traits. Visitors
could use their phones or the in-wing kiosk to view the application’s website. However, this
initial application did not fulfill its original intentions and several desired features were left out
of the completed application. There were also issues scaling the site to fit different sized screens,
a large portion of the data was hardcoded and could not be easily edited, and the site overall was
hard to navigate and full of bugs.

The goal of this project was to build a completely new application to replace the old one. The
new application would provide all of the functionality the original was intended to have, as well
as additional functions requested by the Reiman Gardens staff. The final product would allow
visitors to view images, information, and statistics about butterflies, as well as search for them by
traits or by name. It would also give the Reiman Gardens staff control over functionalities such
as featuring specific butterflies and calculating flight statistics in the wing, plus back-end editing
of butterfly data. Finally, they could use the site to track shipments of butterflies received into
the wing.

 3

Requirements

Functional Requirements

Visitor Requirements
The site shall allow visitors to:

1. Look up a butterfly based on physical traits.
2. Look up a butterfly based on its scientific or common name.
3. Look up a butterfly based on whether it is currently present in the butterfly wing.
4. View real-time search results based on their search criteria.
5. View information about an individual species of butterfly.
6. View statistics about the current state of the butterfly wing.
7. View statistics in a graphical, aesthetically interesting manner.
8. Browse a photo gallery of butterfly images.
9. Browse images of butterflies currently present in the wing.
10. Browse educational articles.

Administrative Requirements
The site shall allow administrative users to:

1. Log information about shipments of butterflies.
2. Import and export Excel files containing details about butterfly shipments.
3. Log information about butterfly releases.
4. Add, edit, and remove butterfly information.
5. Add and remove images of butterflies.
6. Set a featured “butterfly of the day”.
7. Enter articles to be displayed to visitors.
8. Enter data and have statistics generated based on this data to be displayed on the site for

visitors.

Non-Functional Requirements
The site shall:

1. Require administrative users to authenticate in order to access administrative
functionality.

2. Hide a login option from visitors.
3. Be aesthetically pleasing to visitors to the butterfly wing.

 4

4. Render well on all screen sizes.
5. Be intuitive to use by visitors and volunteers of all ages.
6. Contain a page for adding butterfly release information that is simple and easy to use,

especially from a mobile device.

Coding and Workflow Standards

Naming Conventions
All PHP and Javascript files must adhere to the following code-naming conventions.

Naming Style Capitalized Pascal Case Camel Case

Example EXAMPLE_NAME ExampleName exampleName

Applies to Constants Classes Method / Function names
Class attributes
Method / Function
Parameters

Table 1: Naming standards

Boolean Test Methods
Methods that perform a simple test and return a Boolean value should start with the word “is”.
For example, a method that indicates whether a container is empty or not should be “isEmpty()”
rather than simply “empty()”.

Getters and Setters
Attributes may be protected only if there is a compelling reason such as being required by the
laravel framework. All changes in value to an attribute must be through some kind of method or
changed by a subclass.Methods that either set or get the parameter of an object with minimal
processing must have the function name start with “set” or “get” respectively.

Code Formatting
The default conventions are derived from the PhpStorm auto formatter utility. Developers should
run this utility on any file they modified prior to submitting their code for review.

 5

Documentation
All classes, methods, and functions created must have a phpdoc. The document must clearly state
what the class, method or function is for as well as what the parameters are and the return value
if they are present. PHP docs must be full sentences and grammatically correct. It is ultimately
up to the person performing the code review to determine if these conditions have been satisfied.

If documentation is absent from a file that was modified, for whatever reason, the developer to
last work on that method should add that documentation. The documentation will be added on
the branch in which the documentation was discovered missing and submitted back to the
original reviewer for approval.

Branching Policy
No code will ever be committed directly to master. For each task, a new branch will be created
and named according to the goal of the task to complete on that branch. The developer will do
only the work for that specific task on that branch.

When development is done, the developer should merge from master into the working branch
and resolve any merge conflicts. The reviewer, once satisfied, will merge the working branch
into master.

Implementation Details

Tools

Server Side
For the backend, we used the PHP framework Laravel. This framework provided us with a
number of useful utilities and libraries that made development of the project and structuring the
code faster and cleaner. Some of the utilities that were particularly useful to us were the web
page templating, object-to-database mapping, authentication services, and validation services.

Laravel allowed us to closely follow the MVC pattern and to clearly define in what layer a
specific functionality belonged. Maintaining this pattern meant that the codebase is well
organized and easier to navigate and update.

 6

Additionally, we used Laravel Excel, a utility by Maatwebsite. It enabled us to provide
functionality for importing and exporting Excel documents of shipment data.

Client Side
The biggest non-functional requirement for this project was for web pages to be dynamically
sized to fit the screen on which they were displayed. To solve this problem, we employed Twitter
Bootstrap, a CSS and JavaScript library that performs much of the screen sizing automatically.
Bootstrap is based off of a 12-column grid system. As the screen size gets smaller, Bootstrap
drops some of the extra columns down to a new row. In this way, we only needed to lay out our
elements using the grid to ensure responsiveness.

Bootstrap also provided us with many common UI elements such as tabs and menu items.

The project also makes use of jQuery for manipulating page elements on the client side and
making Ajax calls to the server. Examples of its use within the application are the search page
and on the shipments pages.

Charts.js was used for generating both line chart and the pie chart on the stats page of the
application.

On the gallery pages, LightBox was used to display a full sized image when an image on the
page is selected, without having to load a new page for the image.

On the administrative side, TextAngular was used to provide a WYSIWYG text editor for use by
the client to enter notes for the wing.

 7

Class Hierarchy and Design

Figure 1: Class hierarchy displayed in MVC layers

As mentioned in the tools section, our project follows the MVC pattern. Laravel provides base
controllers and model classes for the project classes to extend. The HTML views are generated
dynamically by the Laravel blade engine.

Controllers
Search Controller​ - ​The search controller was responsible for generating the SQL queries to
perform searches requested by the user, and processing the data into a JSON form before sending
it back to the user. Because traits are associated with a variant rather than the butterfly itself, the
search operation actually searches for matching variants and returns their associated butterfly
species.

Butterfly Controller​ - This controller is responsible for manipulating the Butterfly objects. Add
butterfly, edit butterfly, delete butterfly operations all pass through this controller. This controller
will also return the page to view information on a specific butterfly to the user.

Stats Controller​ - The stats controller is responsible for querying the database for and
aggregating statistics about the butterfly wing as a whole. (Individual butterfly statistics are
handled by the butterfly model.)

 8

Shipment Controller​ - This controller processes all Shipments, ShipmentRecords, and
ReleaseRecords. When a release or shipment is recorded, the new release or shipment will be
handled here.

Notes Controller​ - This controller is responsible for processing notes Nathan likes to display on
the site that may highlight a butterfly or an interesting fact in the wing. Created notes are stored
in the database by this controller. Stored notes are also updated, deleted, and set as active to be
displayed on the Stats page through this controller.

Models
Butterfly​ - This model represents a butterfly species and contains information about the species
such as scientific and common name, longevity, food source, and range. The model is linked to
different Variants of the butterfly and to ShipmentRecords which detail how many of the species
have been received by the wing.

Variant​ - A model whose main role is to link the images and traits to a butterfly species. Some
butterflies demonstrate dimorphism (when males and females look significantly different despite
being the same species). Other times, a butterfly’s traits may vary based on the region. This
intermediate model allows for different sets of images and traits to be mapped to one butterfly
species.

Image​ - Represents an image of a butterfly. It is mapped exclusively to a Variant object. The
Images model contains information such as the image name and the type of image (wings open,
wings closed, pupa, larva, etc.).

Trait ​- This model represents a Trait that a butterfly may display. Such traits include inside and
outside wing colors, the number of walking legs, the butterfly size, and food source. The search
query attempts to find butterfly variants that map to as many of the requested traits as possible.

Shipment​ - Represents a shipment from one of Reiman Gardens suppliers. This model includes
the date the shipment was sent, the date it arrived, and the supplier it came from. It then links to
several ShipmentRecords which contain the information about individual butterfly species.

ShipmentRecord​ - Represents the part of a shipment related to an individual butterfly species.
The model includes the number of butterflies received and information about how many were
damaged in transit, etc. It is linked to the overall Shipment and to the Butterfly.

 9

ReleaseRecord​ - Represents the subset of butterflies from a ShipmentRecord which were
released into the wing on a given day. The model includes the date of the release and the number
of butterflies released. It is linked to a ShipmentRecord.

Note - ​Represents a note that may be posted by an administrator. The note contains text to
display to the user as well as an indicator signifying if the note should be displayed. The active
notes are displayed on the homepage.

Plant - ​Represents a plant species. This will eventually host a similar structure to the Butterflies
relations with its associated classes. This is an area for future development.

Platform / Hosting
The application runs on an Apache HTTP server configured to run PHP with the Laravel
framework. The server makes use of a MySQL Database. Both the server and database are run
on an Ubuntu server. The server is provided by the cloud hosting service DigitalOcean.

The code repository is hosted in a private GitHub under the Reiman Gardens account.

Operating environments
The application is run on a web server and used from the following platforms:

● Kiosk in the butterfly wing
● Volunteers’/staff members’ tablets

○ Within the wing
○ In the lab

● Visitors’ phones

Testing processes and testing results

Code Review
The Developer’s Responsibilities
The developer is ultimately responsible for every aspect of their code. The reviewer is simply a
check against mistakes and to check that the code is understandable by someone other than the
original developer. As such, the developer must test their code and verify that the code works as
intended. Developers should also check that the code is easy to understand and well commented.
No commented out code is permitted.

 10

The Reviewer’s Responsibilities
The reviewer’s primary responsibility will be to verify that the code is maintainable. This
includes verifying the code adheres to the agreed upon naming and formatting conventions, and
that the code is easy to read and follow logically.

The reviewer should verify that all aspects the task were addressed by the submitted code, and
ask the developer about any points of concern in the code.

It is not the responsibility of the reviewer to extensively test the code, although they may if they
have concerns about portions of it. It is the responsibility of the developer to thoroughly test the
code prior to submitting it for review.

User Acceptance Testing
A test server is maintained to verify functionality in an environment identical to that of
production. The environment is available to both the client and the developers.

 11

Appendix I: Operation Manual

Home page
Open a web browser (Chrome, Safari, Firefox, etc.)
Copy and paste the following into the address bar: ​http://162.243.245.97/

(note: this is the IP address of the test server)
That will bring you to the home page of the site, which will look similar to the following:

Figure 2: A screenshot of the home page as it appears to visitors on the kiosk

From the home page, you can browse to any of the other pages of the site using the navigational
tabs at the top right. The butterfly of the day and Nathan’s Note are displayed on this page as
well.

 12

http://162.243.245.97/

Stats Page

Figure 3: A screenshot of the Stats Page

The statistics page shows fun facts and graphs about the current state of the wing. Such
information as the historical butterfly population in the wing, and the region distribution from
which the butterflies can is shown here.

The page has limited interactivity, but you can hover over the species distribution chart to see a
label for each section.

Butterfly Search

Figure 4: A screenshot of the Advanced Search Page

 13

The search page allows guests of Reiman Gardens to look up a butterfly based on traits and
name. The search field is populated dynamically as a user selects traits.

You can tab between the basic and advanced search pages for more search options.
To select a trait, click on the image that matches what you want to search for.
For more information about a butterfly, click on it in the Results panel.

Gallery

Figure 5: A screenshot of the Photo Gallery

The gallery page allows a user to browse and view different pictures of the butterflies.

You can click on an image to expand it, or click on the name of a butterfly to see more
information about that species.

 14

Plants

Figure 6: A screenshot of the Plants Page

Learn More

Figure 7: A screenshot of the articles browser

 15

The learn more page contains links to articles where visitors to Reiman Gardens can go to learn
more about a particular topic.

You can click on one of the article tiles to see that article. An example article is shown below.

Figure 8: A screenshot of an article

 16

Appendix II: Alternative Versions
Initially several different design layouts based on the previous project were created. Upon
meeting with the client and hearing their concerns, some of these ideas were scrapped in favor of
what has been developed to date. In general, these versions were thrown away as they did not
meet the client’s desire to focus the gallery and daily statistics about butterflies in the wing.

These ideas were also impractical after we learned more about the project. The first version was
very focused on the front end to show off to the client what the new website could look like. As
our knowledge of what was desired grew, we learned that these designs provided essentially no
functionality as they were static HTML pages. We then moved the front end work to the backlog
and focused on designing a backend and database that would allow us to provide functionality to
the client.

Figure 9: The initial idea for the Home Page

 17

Figure 10: An alternative layout idea for the Home Page

 18

Appendix III: Code

Routes
Laravel gave us the ability to define routes within our site and direct them to particular controller
methods. We simply specified the type of request we expected to a given route, then the name of
the controller and the method to call. That also made it easy to include middleware (ex. for
authentication) for individual routes.

Figure 11: The route.php file linking html routes with controllers

 19

Controllers
Controllers are used to group related route logic into one class. For instance, the butterfly
controller handles all of the back end functionalities for adding, editing, and deleting butterflies.
The butterfly controller handles a total of seven routes for all butterfly edits made by
administrators.

Figure 12: The ButterflyController class

Blade Templates
Blade is Laravel’s templating engine, which is used to maximize code reuse. It enabled us to
create an overall template for the layout of the application (app.blade.php) and extend it for each
individual page in the site.

Blade also allows us to reuse common UI elements. Some of these elements include the
collapsible headers used on the search page, and the image buttons used on the search page and
the add butterfly page.

 20

Figure 13: The Basic Search Page blade file

Models
Models in Laravel provide an interface to the database using Eloquent, Laravel’s ORM
(object-relational mapping). Model classes are created in the app directory of the project, and
each one is associated with a table in the database. They provide methods for viewing and
changing elements within the related table. For instance, our database includes a table for
shipments. The table is linked to shipment_records (another table related to the butterflies of a
particular shipment). The Shipment and ShipmentRecord models allow us to get the shipment
records associated with a given shipment (and vice versa) through a simple method call (see the
method shipmentRecords() in the code below). They also give us the ability to create shipment
records to be associated to the given shipment without having to deal with matching IDs between
the two database tables.

 21

Figure 14: The Shipment model

 22

